2016/09/09(金)H8/3069F ROMライタの制作

2016/08/10 の記事 で紹介した道具を、特注で製作しなければならないことになり(というか当初の作業工程策定で漏れていた)、急遽現在のファームウェア制作を数日中断して作ることにしました。

その部品たちの一部が以下:
20160910.JPG

来週半ば目途に完成させないとならないという、半ば突貫工程です。。
と言っても、プリント基板さえ作ってしまえば、1~2日程度で出来そうな規模ですが。。

2016/07/16(土)サトーパーツの端子台 ML-1800-S1-Pxx

2017/10/12 19:31 電子工作
プライベートCA関係の記事の予定でしたが、これも自分メモ。。

左側が32端子あるタイプの ML-1800-S1-P32 という型番の部品、
右側が 6端子あるタイプの ML-1800-S1-P6 という型番の部品。
DSCF5420.JPG

この端子台は、横にいくつでもレゴブロックのように連結することができます。
話には聞いていたし、どこかでそういう説明も見かけた記憶があるのですが、実際に見たことが無いし、メーカーのカタログ等に説明が無い。

と、いうことで、将来同じ疑問を持つかもしれない方々のために検証出来たので記録しておきます。
先ず、左端は簡単にカバーを外すことができます。
DSCF5422.JPG

カバーを外すと金属端子がむき出しになります。それを覆うためのカバーですね。
ここからが重要なのですが、この端子台は最小2端子単位で簡単に分解できます。
DSCF5423.JPG

なので、品番としては 32端子ものの ML-1800-S1-P32 が入手可能な端子数としては最大ですが、連結してあたかもひとつの大きな端子台として実装することができます。
これは 32端子ものと 6端子ものを合体させて、38端子を構成した様子です。
連結の際は、連結する側の左端のカバーを外します。
DSCF5424.JPG

ちなみに右端は常にこんな感じになります。
DSCF5425.JPG

連結のための凹部があります。

2016/03/08(火)仕事で使っているんだが・・・

2017/10/12 19:18 電子工作
#こちらのサイトでは、技術的なこと・業務的なことを中心に追記していきます。
#専門外だと内容的に難しいですが、ここはそういう方針ですのでよろしくおねがいします。

今や、全て「絶版」です。年代ものになってしまい、ボロボロですよ。。
これらは、現在では半導体メーカのWebサイトにて無償提供されており、殆どの場合、PDF形式のファイルでダウンロードできます。
ただ冊子形式ではなく、型番ごとに個別に入手する形になります。
20160308_1.jpg
20160308_2.jpg
20160308_3.jpg

半導体メーカでは型番毎に詳しいデータが掲載されているので、電子回路設計に必要な情報は昔より格段に入手が楽になった反面、いちいちパソコンなどで観なければならないので、作業途上では案外不便なんです。

ちょっとした確認には冊子になっているほうがいいのです。
こういう不便を感じているのは自分だけなのだろうか。。

これらCQ出版社刊のハンドブック形式規格表は、1999年まで毎年発行されていたようなのですが、「TTLIC規格表」と「CMOSIC規格表」は 「汎用ロジック・デバイス規格表」として2003年に復活したものの、2008年の発行が最後、トランジスタ規格表は2013年の発行が最後のようで、絶版になっています。

Webから情報が入手できるようになったのと、これらを設計する仕事が長らくの景気低迷で減ったので、需要が減ったのでしょうね。

当方も 1986年以降、脱サラするまでの10数年間、このような業務に直接携わることがなかったのと、設計開発業務が増えてきた 2012年以後は既に売っていなかったのと、必要性もあまり生じなかった(手持ちの古いもので何とか間に合っていた)ので購入する行動に出なかったわけです。

新しいものが欲しいんですが、売っていませんね。。

2015/11/16(月)半完成品

2017/10/12 19:10 電子工作
製作した基板の動作確認をして、すべて確認済みとなったので依頼元へ持っていきます。
問題は現場への設置で、ケース・バイ・ケースと思われるので、後日、この現場設置作業に出向くことになるんでないか、と思っています。
20151116.jpg

2015/11/02(月)気温・室温計 運用開始できました

2017/10/12 19:08 電子工作
10/30 に設置して稼働始めましたが、
計測値がちょっと変だったので、昨夜ファームウェア直して解決しました。
UDPプロトコルにて遠隔で計測温度の読み出しができます。
表示している数値は摂氏表記の温度です。
ケース加工などちょっと失敗したんですが、自社内部使用なのでそのまま使っています。
使用した緑色の7セグメントLEDですが、10mA の電流でもえらく明るく光る代物でした。秋月電子通商で扱っていますが、宣伝に嘘はありませんでした。

早速、これの康価版の制作依頼が10セットほど入り、本日から作業に入ります。
DSC_0170.JPG

2015/10/26(月)管理用室温計製作状況

2017/10/12 19:07 電子工作
ハードウェアがほぼ完成しました。
20151026_1.JPG

次は、このハードウェアに組み込んだマイクロコンピュータにプログラムを仕込む段階。
そのための結線を一時的におこなっています。
既存プログラム(PIC16 アセンブラベース)の改造を行うのですが、改造規模は未知数です。
したがって「何日程度で」というのは判らない。

でも、どんなに遅くても今週中に稼働させないとまずい状況です。。orz
20151026_2.JPG

2015/10/19(月)管理用の室温計を製作中・・・

2017/10/12 19:04 電子工作
新たに必要になったので、先週あたりから始めています。
8月に製作作業に入りたかったですが、諸事情でこの時期に作業しています。
自らの設備で使うため、試作機=実用機です。
DSC_0165.JPG

不足部品だけを購入し、あとは手持ちの在り合わせなので、今回新たな費用は 4,000円前後で済んでいます。
すべて新規で部品調達からしたら、少なくとも20,000円はかかってしまう。

ネットワーク超しで計測データを取得する必要があり、対応させようとすると、どうやっても原価が高くなりますね。

製品として販売するとしたら・・・ 今のところ受注生産の形になってしまいますから、どう頑張っても 40,000円以上になってしまいますね。
ケース無しキットなら、半値くらいにはできるかもしれませんが・・・

2014/03/13(木)トランジスタによる論理反転の無い 3.3V → 5V/12V etc.. レベルシフト

昨今では、このような課題はICを使えば済むのですが、
ICを使うほどでも無いとか、使えないとか言う場合も多々あります。

今回は、ICを使うほどでも無いのと、電源電圧の問題でトランジスタによるレベルシフト(しかも、論理反転しないもの)が必要でした。

たぶん、一定の汎用性があると思います:
20140313.png

Vcc は、レベルシフト後のHレベル電圧より若干高い電圧を与えます。
ここでは例示として、 6V としましょう。

Rc は、Hレベルのときに流れる電流で電圧降下を起こすので、その電流を加味して決めます。
ここで 100μA と仮定すると、10kΩでは1V の電圧降下になります。

RB1 と RB2 は、ベース電極の電圧が、Hレベルとして判定させたい電圧 + VBE(0.6V) になるように分圧するようにします。

ここでは、RB1 と RB2 は同じ 30kΩなので、ベース電極の電圧は 3V になり、エミッタ電極の電圧が 2.4V 以上になれば、Hレベルと判定されます。

ところで、提示の回路には、ダイオードが入れてあります。
これは、回路的にVEBOを超える逆電圧が加わる可能性があったために入れたもので、通常は不要と思います。ちなみにこのダイオードを入れると、エミッタ電圧がダイオードの順方向電圧分だけシフトした形になり、更に 0.6V 低い電圧 1.8V 以上でHレベルと判定されることになります。

つまり、この回路は、トランジスタのベース・エミッタ間電圧(VBE)が 0.6V 以下なら、トランジスタは OFF(C-E間は非導通)するので、Vcc の電圧がそのまま OUT に現れ、
0.6V を超えると、トランジスタは ON (C-E間導通)するので、コレクタ電極の電圧がほぼゼロになるという動作を、エミッタ電極に与える電位差でコントロールしています。
Lレベルのとき、RC によって電流制限されるので、このときの電流にも留意する必要があります。この回路定数では、VCE(sat) を無視すると、600μA になります。

C-MOS IC の場合は問題ありませんが、TTL IC を接続する場合は、この回路定数では問題が起きると思います。RC を適宜変更してください。
RB1 と RB2 は、トランジスタの hFE分の1×10倍程度以上のアイドリング電流が流れれば十分です。あまり小さい抵抗だと、回路の消費電流が無駄になるだけですので、RC の数倍から10倍程度でいいでしょう。

2014/01/23(木)NPN 型単安定マルチバイブレータ

2017/10/12 5:54 電子工作
これが案外苦労したので、自分メモ。。
基礎の範疇ですが、「マルチバイブレータ」と称する電子回路には

・非安定マルチバイブレータ
・単安定マルチバイブレータ
・双安定マルチバイブレータ

の3種類があります。電子回路を勉強している方なら、皆知っている。

Google 先生に尋ねれば「非安定マルチバイブレータ」の実例集は多いが、
単安定マルチバイブレータは殆ど出てこない。
それは、「非安定マルチバイブレータ」が基本回路であり、
単安定と双安定は応用の範疇だからです。

今般、システム設計の依頼があったため、要件仕様を満たすために、単安定マルチバイブレータを、トランジスタで組むことにしたのです。

単安定マルチバイブレータは、短いパルスを一発出すと、より長時間の一定時間単発パルスを出す回路です。
簡単にいくと目論んでいたが、教科書どおりに回路組んでもまともに動作しない・・・

結局、落ち着いたのが以下の回路:
20140123.png

この回路定数で約7秒弱のアクティブHなパルスが出力(Q2 のコレクタ電極)に出てきます。
このパルス幅は、0.693R42 (sec) になります。
1とR2でCR微分回路を形成し、押しボタンスイッチを押すことで、トリガパルスを発生させます。図中の回路定数では、計算上では、10nF × 10kΩで 100μs になります。

図中では、アクティブHのトリガパルスをQ1 のベース電極に与えていますが、古い文献ではアクティブLのトリガパルスを、Q1 のコレクタ電極に与え、更にQ1 のベース電極を負電源に接続したり、抵抗を介して接地している例示が多いですが、抵抗を介して接地する方法を実際に試すと、まともに動作しないようです。回路定数の問題かもしれませんが、、

また、負電源なんて論外。実用的にそのような面倒且つコストアップに繋がる回路は採用できません。

CR微分回路は、この回路の場合、スイッチを離したときに負電圧のパルスが出るため、それを阻止するために、D1を入れます。こうすることでトランジスタQ1の破壊を防ぐ役割もあります 。

3 は、C2の充電電荷による、トランジスタQ2の逆耐圧破壊を防ぐためのものです。電源は +12V であり、このトランジスタ(2SC1815) のベース-エミッタ間逆耐圧は 5V しかないため、逆耐圧が 30V 以上あるダイオードで保護するのです。ここは最大で 12V の逆電圧がかかる可能性があります。

2 は、ダイオードD3 を入れることで、0.6V 程度の電位差が生じ、安定動作を妨げるため入れてあります。このあたりが実用にあたって、教科書どおりでは駄目なところらしい。

本当は手持ちの余りがあった PNP型トランジスタ 2SA1015 でやりたかったのですが、これもどうも上手く出来なかったのでした。これは恐らく回路組み上げのミスでしょう。
基本的にPNP型でも出来るはずなので。。。